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1 INTRODUCTION

With the popularity of smart devices such as voice-controlled speakers and televisions, the need
for Automatic Speech Recognition (ASR) has become ubiquitous in contemporary life. Mod-
ern ASR systems can be roughly divided into two major components: the acoustic model (AM)

component and the language model (LM) component [81, 83]. The AM is responsible for map-
ping acoustic signals to phones while LM is responsible for guiding the search of grammatically
legitimate word sequences.
The vendors of commercial ASR systems typically provide “one-size-fits-all” products (i.e., fixed

AM and LM) for all clients. For specific client scenarios, the “one-size-fits-all” ASR systems in-
evitably suffer from dramatic performance degradation due to the discrepancy between training
and testing data [25]. As an imperfect patch up, the service of tuning LM for the client is increas-
ingly supported by ASR vendors. However, this service heavily relies upon client uploading sensi-
tive transcripts of their private speech data to the vendor. Considering that strict data regulations
such as the European Union’sGeneral Data Protection Regulation (GDPR) [72] has come into
effect, such privacy-violating practice becomes illegal for real-life applications. Meanwhile, since
the amount and diversity of speech data utilized for training the ASR system is critical for the
performance of AM, the speech data stored on clients’ machines is invaluable resources for ASR
vendors to further refine their ASR systems. However, with the arrival of the era of strict protec-
tion of data privacy, the ASR vendors are facing unprecedented challenges of obtaining the speech
data that is generated from real-life scenarios. Hence, neither the clients nor the vendors would
be prosperous if the status quo of the ASR ecosystem remained unchanged in the long run and a
GDPR-compliant ecosystem needs to be established for the ASR industry.
In this article, we propose a novel framework that seamlessly integrates transfer learning, fed-

erated learning and evolutionary learning to meet the above requirements. In the proposed frame-
work, transfer learning is responsible for tuning a highly customized ASR system for the client and
overcoming the performance degrade caused by the “one-size-fit-all” LM and AM. Federated learn-
ing bridges the gap of information flow between the clients and the vendor in a privacy-preserving
way. With differential privacy, the perturbed version of tuned AM works as a compact and secure
proxy of clients’ data and are communicated between the clients and the vendor. When the ven-
dor receives the transmitted AMs from the clients, evolutionary learning is employed to integrate
them and generate a next-generation general-purpose ASR system. To verify the effectiveness of
the proposed framework, we conduct large-scale experiments on real-life datasets with regards to
different quantitative metrics. The experimental results univocally verify its validity and technical
superiority.
The major contributions of this article are summarized as follows:

• To the best of our knowledge, this is the first framework that equips ASR system with deep
customization capability of both LM and AM for any client scenario.
• The proposed framework pioneers in communicating ASR components between the clients
and the vendor while make the whole procedure privacy-preserving and GDPR-compliant.
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• An evolutionary algorithm with new operators is proposed to integrate a wide range of
tuned AMs to generate the next-generation ASR system for the vendor.

The rest of this article is organized as follows. We review related works in Section 2. Then, we
discuss the architecture and the detailed techniques used for building the proposed TFE framework
in Section 3. The experimental results are shown in Section 4. Finally, we conclude this article in
Section 5.

2 RELATEDWORK

This article is closely related to automatic speech recognition and machine learning paradigms
such as transfer learning, federated learning, and evolutionary learning. We briefly review the
most related work in the following subsections.

2.1 Automatic Speech Recognition

Speech recognition has been intensively studied for decades. The modern ASR system can be
roughly divided into two major components: the LM and the AM. In an ASR system, the LM plays
the role of guiding the candidate search and evaluating the quality of the decoding output.
For decades, traditional statistical LMs such as the backoff n-gram LM has dominated this area

due to its simplicity and reliability. Neural LM is proposed in Reference [6], which uses a three
layer neural network to predict the conditional probability distribution of the next words given
previous words. Then, a hierarchical probabilistic neural LM is proposed in Reference [51] mainly
focusing on speeding up the training time. The recurrent neural network–based language

model (RNNLM) and its variant [47, 48] uses recurrent connections to preserve short term mem-
ory. Bidirectional Encoder Representation from Transformers (BERT) is proposed in Ref-
erence [19], which applies the bidirectional training of transformer, a popular attention model, to
language model. It is proved that a language model that is bidirectionally trained has a deeper
sense of language context and flow than single-direction language models.
As for AM, the deep learning–based AMs such as the DNN-HMMmade a great breakthrough in

ASR industry [18]. Connectionist temporal classification (CTC), proposed in Reference [26],
is a fully end-to-end acoustic model training that eliminates the need to pre-align the data, requir-
ing only one input sequence and one output sequence to train. The speech recognition problem is
essentially the problem of direct conversion of two variable length sequences. The Seq2Seq [70]
model’s elegant model structure and powerful performance make the speech recognition prob-
lem hopefully get rid of the language model completely and pronunciation dictionary. At present,
carefully tuned DNN-HMM AM still maintains the state-of-the-art performance.
However, even with the advancement of AM and LM, existing commercial ASR systems still

work suboptimally for the clients due to the discrepancy between training data and those from
the client scenarios. To the best of our knowledge, there hardly exists any ASR products with deep
customization capability for both LM and AM. Although some commercial ASR products provide
functionality of tuning LM through client uploading transcripts or keywords, it is becoming ille-
gitimate due to the serious breach of data privacy.

2.2 Transfer Learning

With the increasing scale of machine learning models, the in-domain annotated data play an signif-
icantly important role in real world applications, which are expensive at time and cost. How to alle-
viate the need of in-domain labeled data has drawnmany research attentions, and researchers have
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proposed plentiful algorithms that is summarized as transfer learning [55]. Transfer learning aims
at leveraging the knowledge from one task (or domain) and help the learning of another task (or
domain). According to what, when, and how to transfer knowledge, transfer learning algorithms
are further categorized into four types: instance-based transfer learning, feature-based transfer
learning, model-based transfer learning, and relation-based transfer learning. As deep learning
techniques become dominant, more feature-based and model-based transfer learning techniques
are proposed andwidely applied, which significantly improve the performance on small data learn-
ing as well as reduce the training cost.
The transfer learning techniques for AM used are conventionally termed as acoustic model

adaptation, aiming at adapting the acoustic model to the target domain to reduce the domain
discrepancy. Most of works follows the idea to align two or more distributions, as has been sum-
marized in Reference [68]. Previous works on acoustic model adaptation can be divided into three
categories: (1) linear transformation, (2) conservative training, and (3) subspace method. From the
aspect of transfer learning, methods (1) and (3) are related to feature-based transfer learning, and
method (2) is related to model-based transfer learning. Linear transformation holds the assump-
tion that the speech features can be normalized through linear mapping. Linear transformation
simply add a transformation network (or transformation layer) into the existed network to per-
form linear mapping. It is a popular adaptation method for neural networks. The linear input
networks [2, 52, 71] apply a transformation network before the input layer. Gemello et al. [23] ex-
amined the effectiveness of inserting transformation layer between different layers of the original
network. Li et al. [39] proposed that the distortion of speech variation is an important factor of
performance reduction. The target of subspace method is to find a subspace for each to construct
adaptedmodel parameters or transformations as a point in the subspace. Li et al. [41] used subspace
to estimate transformation matrix by considering it as a random variable. They applied principal
components analysis (PCA) to decompose the adaptation matrices into principal directions in
speaker space. Conservative training has become the mainstreaming accented adaptation meth-
ods for it can utilize the trained model and needs small amount of accented data to performance
adaptation. Literature [82] introduces KL-Divergence (KLD) regularization term to DNN. The
mathematical form of KLD regularization is neat and differentiable, which is critical for deep learn-
ing training. Conservative training is effective and efficient, and it does not need too many data
to achieve an acceptable result. However, conservative training involves too many parameters,
which may still break the structure of model [78]. Recently, a more powerful transfer learning
technique for distribution adaption has been proposed [73] whose main idea is to dynamically
learn the relative importance of marginal and conditional distributions in transfer learning, while
related method has not been adapted to speech recognition due to its relatively large computing
costs.
In the area of text mining, it is quite common to transfer the knowledge in pretrained mod-

els to new tasks [20, 49, 58]. In particular, Chronopoulou et al. [17] propose to incorporate the
LM objective to the task-specific optimization function to transfer the knowledge preserved by
pretrained language models. BERT [20] pretrains LMs and shows improvements for various down-
stream tasks. When it comes to speech recognition area, the transfer learning techniques for LM
used are termed as language model adaptation, aiming to bridge the gap between the source do-
main and the target domain. Cache-based methods were proposed in literatures [36, 37] and by
saving the recent decoding results, the model has the ability of increasing the probability of recent
words. Singh et al. [63] propose a discriminative language model in which a perceptron is trained
to re-rank the N -Best using features extracted by the first-pass decoding. Topic model-based ap-
proaches such as LDA [8] and WVM [13] is also been used to capture the correlation between
words and generate document-specific language models. Recently, recurrent neural network
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languagemodel (RNNLM)was proposed in Reference [75], and Reference [40] further proposed
a DNN-based model to adapt the language model for ASR.

2.3 Federated Learning

In recent years, the concerns of data privacy and security have arisen, since the current data-
drivenmachine learning algorithms usually consume amassive amount of data, whichmay involve
very sensitive information such as individual privacy, businesses secrets, or even about public
security. Unfortunately, many research [7, 14] have proved that adversaries can attack machine
learning models for their interests. To avoid the potential damages, many countries enforce or
plan to publish laws and regulations to protect the personal information privacy and security. In
2018, the European Union enforced a profoundly influential regulation, called the EU GDPR [72],
which aims to protect the security and privacy of user, giving the right to user for ripping their
personal information from companies. As it happens, China and the United States also establish
relevant laws to regulate the collection and utilization of individual information.
However, the collaborations of data andmodel help boost the performance onmany applications.

For the case that in-domain high-quality labeled data are scarce, but we can find another relevant
domain with rich labeled data, transfer learning from a source model is a popular choice [55]. In
the case where data are fragment and distributed on many parties, collaborative machine learning
can help jointly utilize these data and learn a more powerful model. However, neither of these
methods is compatible with the aforementioned regulations or bills, as they suffers from the high
risk of leaking private information.
Recently, researchers propose a novel privacy-preserving collaborative learning paradigm, fed-

erated learning [46, 76] to deal with the dilemma about the utilization and protection of data. Fed-
erated learning is combined with various machine learning algorithms such as neural networks
[15, 46], SVMs [10], and Logistic regression [27]. As one of key motivations of federated learning
is to protect the data and model from privacy leakage while collaborative learning, the proposed
federated learning algorithms have to claim what level of the protection they can provide and how
they can achieve. To ensure a higher level of data security, some federated learning algorithms
introduce mechanisms in secure multi-party computing and cryptography. For example, work in
Reference [9] improves the the horizontal federated learning algorithm by introducing the secure
aggregation protocol. Works proposed by literatures [16, 43] introduce homomorphic encryp-

tion (HE) [62] to protect the intermediate result between federated parties. However, HE-based
methods bring extra encryption computation costs and larger communication cost due to the ci-
phertext. Securemulti-party computation [77]methods are also used for collaborative learning, but
the number of participants in this protocol are limited. Besides, due to the probabilistic property
of differential privacy [21], differentially privacy is widely used in federated learning for protect-
ing the transaction of models or data [5, 24, 28, 30, 57, 74]. The benefits of differential privacy
techniques involves two phrase: (1) first it does not need extra communication and computation
costs of transmitting encryption keys as well as encryption and decryption; (2) we can control the
balance between privacy protection and data utility. In our work, we apply differential privacy to
protect local model in to avoid potential privacy leakage.

2.4 Evolutionary Learning

Evolutionary learning [31] is a class of stochastic search and optimization techniques inspired by
the natural evolution of biological systems. With the spirit of global search ability, parallelism, and
flexibility, evolutionary learning has been widely applied to image classification [3, 4], object de-
tection [11, 42], regression [34, 64], scheduling, and combinatorial optimization [33, 44, 53, 54, 80].
Recently, with the trend of deep learning, evolutionary learning has also been combined with the
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Fig. 1. Schematic Diagram of the TFE Ecosystem. Clients purchase LM and AM from the vendor, and tune

both models on their local data using transfer learning. After that, customized AMs are collected onto vendor

via federated learning, which will be utilized by evolutionary learning to improve the vendor’s AM.

deep neural networks and shown encouraging performance, such as neural network optimization
[38, 50, 69] and neural architecture search [12, 60, 61].

In evolutionary learning, a population of candidate solutions (individuals) is initialized and
evolved towards good/optimal solutions through an evolutionary process. In each generation of
the evolutionary process, each individual is evaluated by a fitness function, which measures the
performance of the individual on the target task. Then only the fittest individuals are selected as
parents to breed the new individuals through genetic operators (e.g., crossover andmutation), pass-
ing their characteristics to the next generation. With the iterative selection and reproduction, the
initial population is improved until the final population achieves the maximized fitness. Accord-
ing to the genetic representation of individual, evolutionary learning algorithms can be roughly
categorized into genetic algorithm and genetic programming. While genetic algorithm employs a
a fixed-length string of genes (bits, real numbers, or symbols), genetic programming works with
more flexible structures such as trees and graphs with variable sizes.
Noticeably, evolutionary learning is naturally suitable to cope with federated learning as it plays

as an powerful tool for optimizing model in a distributed environment. Zhu and Jin [84] adapt evo-
lutionary learning to assist model optimization by learning to reducing connectivity of networks
and improving communication efficiency. Zou et al. [85] set up an evolutionary game environment
for every mobile device to find their optimal training strategy that maximizing their utilities.
In this work, we leverage the genetic algorithm to find a better vendor ASR system by evolving

the population of customized models and original vendor model.

3 THE TFE ECOSYSTEM

Here, we propose TFE, which is a win-win ecosystem for ASR clients and vendors with revolu-
tionary performance. As illustrated in Figure 1, TFE seamlessly integrates three machine learning
paradigms: transfer learning, federated learning and evolutionary learning. Transfer learning is
applied to build a highly customized ASR system for each client. Federated learning is employed
to transfer the tuned AMs from the clients to the vendor with Local Differential Privacy (LDP).
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Evolutionary learning is responsible for composing the next generation of ASR system by integrat-
ing the tuned ones collected from the clients.

3.1 Transfer Learning for Client

TFE provides a principled way for each client to obtain a highly customized ASR system, which
performs significantly better than its “one-size-fits-all” counterparts. Since the client does not nec-
essarily have a large amount of labeled speech data nor powerful computational capability, we
resort to transfer learning to conduct customization for both LM and AM. Transfer learning pro-
vides a methodology to leverage the knowledge learned from a data-sufficient domain to help the
learning in data-limited target domain [56]. Such philosophy works for ASR if we consider the
vendor ASR system as the knowledge from data-sufficient domain and the client scenario as the
data-limited target domain.

3.2 Transfer Learning for LM

As the most common choice in ASR system, the backoff n-gram model is adopted in TFE as the
language model. Technically, the backoff n-gram LM can be considered as a list of tuples, each of
which contains an n-gram as well as its corresponding logarithm probability. The transfer learning
of LM is implemented by interpolating the LM trained on private data with the vendor LM as
follows:

P (w) = λPVLM (w) + (1 − λ)PCLM (w), (1)

where P (w) indicates the probability of the n-gram w, PV
LM

(w) is probability given by the vendor
LM and PC

LM
(w) is the probability given by the LM trained on the client data. This kind of transfer

learning is effective to boost the probability of client-domain n-grams while preserving the wide
coverage of general-purpose n-grams. λ is a hyper-parameter that controls the weights of the
vendor and client language model.

3.3 Transfer Learning for AM

As we mentioned in Section 2, modern deep learning–based AMs can be classified as the DNN-
HMMmodel and the end-to-endmodel. The DNN-HMMAM is a stackedmodel, with DNN respon-
sible for extracting high-level features from acoustic signal such as MFCCs, and HMM responsible
for modeling lexical sequence such as phonemes according to the features extracted by the DNN,
where the lexical sequence is necessary for decoding into transcripts. The DNN component is es-
sentially a neural network with acoustic features as input and senone as the output. Senones are
the context-dependent lexical units (triphoneme), which are to the states of the downstreamHMM
component. However, the end-to-end model is purely a DNN, which also takes acoustic features
as the input, but directly outputs the recognition results.
For either kind of AM, we only apply transfer learning to the DNN part, which means the HMM

component of the HMM-DNNmodel is fixed during transfer learning. As mentioned in the related
work, there are many transfer learning techniques for acoustic model, including linear transforma-
tion, conservative training, and subspace method. In this work, we focus on acoustic model adap-
tation for neural network, namely, conservative training (model-based transfer learning). Yosinki
et al. [79] provide a thorough investigation on the effects of transfer learning on different layers
of a deep neural network, leading to a conclusion that initial izing with transferred features helps
boost the generalization performance, as well as fine-tuning from awell-trained neural work. They
also reveal the fact that different layers capture different types of information, which may have
different effect on the target task.
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Assume the loss functions for training DNNs in the source domain and the target domain are
LS and LT , respectively. In the view of model-based transfer learning with KLD-regularization
[32], our approach can be mathematically summarized as

LT = (1 − ρ)LS +
ρ

N

∑
(x,y )∈Target

pS (y |x ) logpT (y |x ), (2)

where pS and pD are the posteriors associated the models of the source domain and the target
domain, respectively, (x ,y) is the data sample collected from the target domain, N is the number
of such data samples in the target domain, and ρ is a hyper-parameter that controls the transfer
ratio from the source domain. The KL-divergence in the last term prevents overtraining and keeps
the adapted model from straying too far from the source domain model.

3.4 Federated Learning between Client and Vendor

To protect data privacy, the client’s private data cannot be straightly transmitted to the vendor.
Instead, we utilize the components of the customized ASR systems as the medium to convey nec-
essary information for the vendor to further refine its ASR system. As obtaining a large volume
of text corpus is relatively easy and the privacy-preserving approach of training language models
is well documented in literature [29], here we focus on collecting the customized AMs from the
clients.
We employ federated learning [46, 76] to transmit customizedAMs from the clients to the vendor

in a privacy-preserving approach. The aim of federated learning is to resolve the dilemma of data
privacy and utility. With federated learning, each client train a secure version of the customized
AMs and transmit it to the vendor.

Since the customized AMs are obtained through mini-batch stochastic gradient descent

(SGD), its gradients may expose information about the client’s private data. Hence, it is necessary
to generate a secure version of the AM through encrypting the gradients by local differential pri-
vacy (LDP) [1], and we denote this secure version as DP-AM thereafter. LDP employ the Laplace
scheme to inject Laplacian noise into SGD gradient [22]. The Laplace scheme usually requires the
input to be bounded, which is not satisfied by the gradients of DNN. Therefore, we first need to
scale the mini-batch gradient as follows:

Δw ′t =
Δwt

max{1, ‖Δwt ‖2/S } , (3)

where Δwt is the mini-batch gradient, and S is a user-specified parameter and is usually called
sensitivity in differential privacy literature. By doing this, it is ensured that the scaled gradient is
upper bounded by S . Now, we are ready to update the DNN parameters by a stochastic gradient
descent step with injected noise:

wt+1 = wt − ηt (Δw ′t + δt ). (4)

Here δt is a random noise subjecting to Laplace distribution, and ηt is the learning rate. More
specifically, if we assume the batch size of SGD is chosen as b, then noise δt should be drawn from
the following probability density function:

p (δt ) ∝ exp
{
− S

bϵ
‖δt ‖2

}
, (5)

where the parameter ϵ and δ measure the level of such risk. If ϵ is set to be small, then the proba-
bility of leaking data is small but the quality of DP-AMmay degrade due to large gradient noise. It
can be shown that process of training DP-AM is ϵ-differential private [65]. In TFE, these DP-AMs
work as secure proxies of the clients’ private data and are transmitted to the vendor. The property
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Fig. 2. Pipleline of the AGA Algorithm.

of LDP ensures that it is hard to recover the private data from checking the difference between
original vendor AM and the DP-AMs.

3.5 Evolutionary Learning for Vendor

As it is the DP-AMs rather than speech data is transmitted to the vendor, a new training method
is required by the vendor to exploit the value of these DP-AMs.
We resort to evolutionary learning for generating the new vendor AM by integrating the DP-

AMs collected from the clients. As shown in Figure 2, we propose the Acoustic Genetic Algo-

rithm (AGA), and it contains four steps: initialization, selection, genetic operators and termina-
tion, each of which roughly corresponds to a particular facet of natural evolution. The goal of
AGA is to minimize theWord Error Rate (WER) (see Section 4.1.3 for its detail definition) of the
vendor’s AM. The workflow of the AGA is presented as follows:

(1) Initialize the population with the original vendor AM and all the customized AMs encrypted
by differential privacy. Each AM is divided into multiple components and each component
is further encoded into a bit string with their corresponding model parameters. The genes
of each AM is represented by the concatenation of the bit strings of its components.

(2) For each AM, compute its WER on a validation dataset to measure its fitness and individuals
with large fitness are selected as the parents of the next generation.

(3) Populate next generation from the parents through a combination of genetic operators: Re-
production, Crossover, Mutation and WeightedAverage:
• Reproduction copies the selected parents from the current population into the new pop-
ulation without alteration, to retain the best-so-far AMs.
• Crossover recombines the genes from two selected parents to create their children. Specif-
ically, we employ the one-point crossover (P1XO), where a random crossover point is
selected and the tails of parents’ genes are swapped to get the new children:

C ′1,<p = C1,<p ,

C ′2,<p = C2,<p ,

C ′1,>=p = C2,>=p ,

C ′2,>=p = C1,>=p ,

(6)

where p is the random crossover point, C ·,<p and C ·,>=p are the head and tail genes of
parents, C ′·,<p and C ′·,>=p are the head and tail genes of children.
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• Mutation stochastically alters the genes of an individual to introduce more diversity into
the population, allowing more solution space to be searched. In this work, We employ the
single-point mutation (SPM), which randomly flips the bits in genes.
• WeightedAverage is an operator inspired by the success of the FedAvg algorithm [45].
The FedAvg algorithm shows that the models independently trained on different data sets
with the same random initialization can be aggregated to a better model by simple param-
eter averaging. Therefore, we further propose to create a child by weighted averaging two
parents as follows:

w ′ = λ w1 + (1 − λ) w2, (7)

where λ is randomly drawn from (0, 1), w1 and w2 are the model parameters of parents,
andw ′ is the model parameters of child.

(4) Repeat Step (2) to Step (3) until the evolution has reached the maximum number of genera-
tions. Then the AM with the best performance is kept as the new vendor AM.

In terms of Step (3), we first copy all the selected parents by reproduction, then each parent is also
mutated to generate one extra offspring. While for Crossover and WeightedAverage, considering
that they require a pair of parents as the input, and the number of parent pairs are too large, we
only sample a subset of parent pairs for each operator, and offsprings are merely generated from
this subset.
With the aid of this scheme, the vendor can extract valuable information from the collected

clients’ models, and improve its AM in an iterative way.
Finally, to have a clearer understanding of how transfer learning, federated learning and evolu-

tionary learning are composed together, we summarize our framework in Algorithm 1 and Algo-
rithm 2, where the behaviors of the vendor and clients are presented, respectively.

4 EXPERIMENTS

In this section, we present the experimental results. We first describe the experimental setup in
Section 4.1. Then, we present the results of transfer learning in Section 4.2. We show the result
of federated learning and evolutionary learning in Section 4.3. Finally, we compare the models
generated by our TFE framework with human workers in Section 4.4.

ALGORITHM 1: TFE framework: vendor’s side

1 Send LMvendor and AMvendor to all clients;

2 Receive all the customized AMs, say DP-AM1,DP-AM2, . . . ,DP-AMn , from clients;

3 // evolutionary learning

4 Initialize AM population: P = {DP-AM1,DP-AM2, . . . ,DP-AMn };
5 for t = 1, 2, . . . do
6 For each model or pair of models in P , apply the genetic operators onto it, respectively, to

generate offspring;

7 Evaluate the WER of each generated model;

8 Update P to be the set of top-K models with lowest WERs;

9 end

10 Let AMvendor to be best model in P ;

11 return: AMvendor as the new vendor’s AM
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Table 1. Details of the Datasets of the 10 Clients

Client Domain
Training Testing

No. of Waves (K) Duration (h) No. of Waves (K) Duration (h)
1 radio programs 1,009.2 1,000.4 101.0 99.9
2 telephone customer service 7.5 3.9 1.9 0.9
3 daily conversations 361.7 211.7 67.2 35.0
4 dialogs with chatbots 235.5 231.5 46.2 41.3
5 daily conversations 74.8 88.2 7.4 8.6
6 news 152.6 225.4 7.2 10.0
7 news 151.8 204.7 7.2 10.0
8 voice commands 90.4 87.1 17.3 19.5
9 voice messages 113.7 142.8 17.4 22.4
10 daily conversations 122.8 74.6 19.4 11.6
Sum 2,319.9 2,270.3 292.1 259.3

ALGORITHM 2: TFE framework: client k’s side

1 Receive LMvendor and AMvendor from vendor;

2 // transfer learning

3 Transfer LMk from LMvendor according to (1);

4 Transfer AMk from AMvendor by minimizing loss LT in (2);

5 // federated learning

6 Initialize: DP-AMk = AMvendor;

7 while not converged do

8 Iterative update DP-AMk by (4), where Δw = ∇LT (w );

9 end

10 Send DP-AMk to the vendor;

11 return: LMk and AMk as the local LM and AM

4.1 Experimental Setup

4.1.1 Dataset. We conduct large-scale experiments with a setting of 1 vendor and a varying
number (maximum 10) of clients. The vendor’s original ASR system is pre-trained with more than
10,000 h of speech data. The clients have speech data collected from very diverse scenarios, such as
the radio programs, voice mail messages and daily conversations. The sizes of the clients’ private
data also vary a lot, ranging from around 5 h of speech data to more than 1,000 h, which makes
the locally transfer-learnt models to have very different properties. All the speech data are stored
in wav format with sampling rate 16 kHz. Each client’s private data is randomly split into training
and testing data, where the training data is used for local transfer learning on clients, and the
testing data is retained for evaluating the model performance. We list the detailed statistics of this
data set in Table 1.

4.1.2 System Implementation. The TFE framework is built through a full-fledged ASR system
trained by the open-source Kaldi toolkit [59]. The AM is the Kaldi “Chain” model that adopts
the DNN-HMM architecture and the LM is a backoff trigram model that is trained by the SRI

Language Modeling Toolkit (SRILM) [66]. For the system architecture and deployment, such
as the basic communication efficiency and protocols, we mainly build the framework based on
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Fig. 3. Performance of different Transfer Learning (TL) settings.

similar parts of the Federated AI Technology Enabler (FATE)1 platform. From the implemen-
tation perspective, it is worth noting that the transfer learning component, the federated learning
component and the evolutionary learning component are loosely coupled. Each of the three com-
ponent can work independently as long as their inputs follow the requirements in Figure 1. The
whole system is deployed on a cluster of 11 nodes, one of which is the vendor while all the oth-
ers are the clients. The hardware configuration of each machine is 314GB memory, Intel Xeon
Processor with 72 cores, Tesla K80 GPU and CentOS.

4.1.3 Evaluation Metric. We quantitatively gauge the the performance of TFE through the stan-
dard metric WER [35]. WER is a widely used metric to gauge performance of an ASR system. It
compares a reference to a hypothesis and is defined as follows:

WER =
S + D + I

N
, (8)

where S ,D, and I are the minimum number of substitutions, deletions, and insertions, respectively,
to turn hypothesis into reference, and N is the number of words in the reference. The lower the
WER, the better the performance of the corresponding ASR system (i.e., better AM or LM).

In what follows, we elaborate on how TFE effectively solves the problems plaguing ASR clients
and vendors.

4.2 Evaluation of Transfer Learning

We quantitatively evaluate the effectiveness of transfer learning mechanism for each client. We
first distribute the vendor’s AM and LM to all the clients, then each client tunes the AMs and LMs
with its private data. For each locally tuned customized model, we evaluate its WER on its corre-
sponding testing set, and report the mean values and the variances of the WERs in Figure 3. We
observe that either for AM or LM, transfer learning does reduce WER for each client. Especially,
transfer learning for AM brings more improvement comparing to LM. Applying transfer learning

1https://gitee.com/WeBank/FATE.
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Fig. 4. Comparison of the original vendor AM, the customized AMs and the new AM generated by AGA.

simultaneously for AM and LM achieves the best performance. Such observation shows that trans-
fer learning effectively smooths out the discrepancy between vendor data and client data. Hence,
for the clients, TFE has incomparable advantage over the “one-size-fits-all” counterparts and those
with simply tuned LMs through privacy-violating approach.

4.3 Evaluation of Federated Learning and Evolutionary Learning

To evaluate the efficiency of AGA, we collect the customized acoustic models from the previous
subsection with federated learning, where different level of LDP noise is injected to protect clients’
private data, and then merge these models by utilizing AGA. To observe the long-term behavior
of AGA, the maximum number of generations is set to a fairly large number 150 so that the WERs
of the generated models does not decrease anymore. For the finally produced vendor AM, we
still evaluate it on all the 10 testing sets. Besides that, the customized models are also evaluated
on their corresponding testing sets as baselines. The results are reported in Figure 4. It can be
observed that the new vendor AMs generated by AGA, either based upon clean customized AMs
or DP-AMs, are significantly better than the original vendor AM, which implies that customized
AMs are informative for the vendor. Though the new vendor AM is worse than the customized
models when LDP is not incorporated, it is understandable, since each of the customized models
is well calibrated for its special setting, while the vendor AM is a single model needed to fit all the
scenarios. Moreover, the performance difference between them is actually quite limited. However,
when LDP noise is added, the customized models soon deteriorate, but the models generated AMs
still maintain good performance. This phenomenon suggests that AGA is able to extract valuable
information fromAMs and effectively refine the vendor AM, even whenmoderate noise is injected.
Though it is already justified that AGA can greatly boost the performance of the generated mod-

els on the clients, it is important to evaluate whether the new AM generated by AGA generalizes
well on the domains beyond those of the participating clients, since new ASR clients are not nec-
essarily from the domains of current TFE participants. To achieve such goal, we look into the AM
generated by AGA in a five-client setting and gauge its performance on the testing data from the
domains of the other five clients. The results are presented in Figure 5. As for the scenario that
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Fig. 5. WER Improvement of AGA trainedwith five-client setting. Covered refers to the case that the domains

of the testing data and those of the five clients are the same, while uncovered means they have no overlap.

testing domains are covered by the training ones, the AM generated by AGA demonstrates larger
performance improvement for vendor AM. Importantly, as for the scenario that testing domains
are not covered by the training ones, the AM generated by AGA is still robust enough to achieve
fairly good improvement compared with the original vendor AM. This observation is crucial for
ASR vendors, since they can rely on TFE to consistently improve the experience of prospective
clients. But of course, the improvement on the uncovered domains is not as significant as the cov-
ered ones. Besides, the variances on the uncovered domains are much larger. Especially for the
case ϵ = 0.5, the performance on one of the testing domains even worsen.
Another interesting study is to explore the performance of AGAby varying the number of clients

participating federated learning. Though the number of clients is varied for training process, the
testing data are always fixed as all the 10 testing sets to make the comparison fair. The results
are reported in Figure 6. For the AMs without DP noise, more clients bring better performance,
indicating that the diversity of AMs is a crucial factor for the performance AGA. However, when
DP noise is involved, the story becomes different. As for either ϵ = 1 or ϵ = 0.5, the DP-AMs
produced from five-client setting are better than their two-client counterpart. Surprisingly, it also
outperforms the AM from the ten-client setting. It is likely that one of the other five models that
does not participate in the five-client setting encodes wrong information after noise injection.
Then, AGAwith 10 clients is misled by it. This phenomenon suggests that increasing the number of
clients does not always do help when random noise exists. A moderate amount of clients provides
sufficient diversity and avoids involving much noise from the LDP. As a future work, we might
explore how to filter out the contaminated models, which are harmful to AGA.

4.4 Comparison with Human Transcribers

Thoughwe have demonstrated that the proposed TFE framework can greatly decrease theWERs of
the ASR system, it is not clear what these values of WERs imply. To have a explicit understanding
of the effectiveness of the proposed TFE, we compare the performance of our models with human
transcribers to see if TFE has to potential to generate optimized ASR system whose performance is
close to humans. We prepare 100 audios from a domain beyond those studied in previous study as
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Fig. 6. The performance of AGA with different number of clients. The WER is calculated on the same testing

dataset covering all the ten domains.

Fig. 7. Comparison with human workers.

the test data. All audios are split into short segments tomake it easy for humanworker tomemorize
the sentences. Following the human labeling process in Reference [67], a two-pass pipeline is
utilized for human transcribers: The first transcriber works from scratch to label the data and the
second conducts error correction. Each transcriber is restricted to listen to the audio once. All the
transcribers are native speakers.
The LM used in the previous experiments is referred to as small LM (500 MB) while a large LM

(8 GB) trained with more corpus is also introduced in this experiment. Based on the results pre-
sented in Figure 7, we observe that the WER of human transcribers is 9.4%, which is just half of
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the WER of the original vendor AM, even when the large LM is applied. However, after the AM is
improved by the TFE, the best model recorded a WER of 11.8%, not far from the performance of
human. Though the performance worsen after the combination of DP, the final AMs still signifi-
cantly outperforms the original vendor AM. These results are consistent with Figure 4 and provide
further evidence of the effectiveness of TFE.

5 CONCLUSION

In this article, we propose a new ASR ecosystem named TFE, which solves the most challenging
problems faced by ASR clients and vendors in the era of data regulations like GDPR coming into
force. By transfer learning, TFE provides superior ASR products for each client. Through feder-
ated learning and evolutionary learning, TFE provides ASR vendors with necessary information
to consistently refine their product in a GDPR-compliant way. We wish that TFE paved the way
for building a prosperous ecosystem for the whole ASR industry.
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